skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Molstad, Aaron_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Exposure to environmental pollutants during the gestational period can significantly impact infant health outcomes, such as birth weight and neurological development. Identifying critical windows of susceptibility, which are specific periods during pregnancy when exposure has the most profound effects, is essential for developing targeted interventions. Distributed lag models (DLMs) are widely used in environmental epidemiology to analyze the temporal patterns of exposure and their impact on health outcomes. However, traditional DLMs focus on modeling the conditional mean, which may fail to capture heterogeneity in the relationship between predictors and the outcome. Moreover, when modeling the distribution of health outcomes like gestational birth weight, it is the extreme quantiles that are of most clinical relevance. We introduce 2 new quantile distributed lag model (QDLM) estimators designed to address the limitations of existing methods by leveraging smoothness and shape constraints, such as unimodality and concavity, to enhance interpretability and efficiency. We apply our QDLM estimators to the Colorado birth cohort data, demonstrating their effectiveness in identifying critical windows of susceptibility and informing public health interventions. 
    more » « less